Required Reading; Cooling Load: Part Two Walter Grondzik This part of the reading material on cooling load presents information on the various components of design cooling load and how they are affected by design decisions. #### **External Loads** These loads originate at the transition between the interior and the exterior environments established by the building enclosure elements and are determined primarily by design decisions. External loads are critical to the energy performance of smaller-scale buildings and poorly designed larger-scale buildings. < see next page > # • Opaque assemblies (walls, roofs, doors) located above ground | Equation and Variables: | q _s = | U | А | CLTD | |-------------------------|---|---|---|--| | I-P Units: | Btuh | Btuh / ft sq / deg F | ft sq | deg F | | Description: | sensible heat flow | overall coefficient of
heat transfer | surface area of element | cooling load temperature difference | | Discussion: | would like to
minimize this
variable
through
design | a measure of the
ease with which
sensible heat is
transferred through
an envelope
assembly | area of building
elements is an
outcome of
design decisions | a "hypothetical" temperature difference that would result in the same heat flow through a shaded element under static conditions as seen in the "real" case (with solar radiation and heat storage); includes effects of indoor and outdoor air temperatures, daily temperature range, solar radiation, heat storage in assembly, and radiation storage in building mass (minor) | | Implications: | affects
system size
and energy
consumption | maximum values
often set by energy
efficiency codes or
standards | function of
building form; a
sq ft facing north
is not the same
as a sq ft facing
west | affected by orientation, tilt,
month, day, hour, latitude,
exterior solar absorbtance,
and assembly construction
(mass) | | Notes: | imposes
first-costs
and life-cycle
costs | calculated from information shown in building drawings | calculated from
plans and
elevations | empirical values; found in
reference tables; values are
not necessarily intuitive, but
they are logical; patterns can
be remembered for design | • Convective transfer through transparent/translucent assemblies (glazing in windows, doors, skylights): | Equation and
Variables: | q _s = | U | А | CLTD | |----------------------------|--|---|---|---| | I-P Units: | Btuh | Btuh / ft sq / deg F | ft sq | deg F | | Description: | sensible
heat flow | overall coefficient of
heat transfer | surface area
of element | cooling load temperature difference | | Discussion: | would like
to minimize
this variable
through
design
decisions | a measure of the ease with which sensible heat is transferred through a glazing assembly includes effects of both the glass or plastic "view" material and the frame materials and construction | includes area
of frame | a "hypothetical" temperature difference that would result in the same heat flow through a shaded element under static conditions as seen in the "real" case; includes effects of indoor and outdoor air temperatures, daily temperature range, and heat storage in assembly (minor) | | Implications: | affects
system size
and energy
use | maximum values often
set by energy efficiency
codes or standards | function of
building
design | affected by month, day, hour, and assembly construction (mass) | | Notes: | imposes
first-cost
and life-
cycle costs | obtained from
manufacturers' data as
determined by
specification of
product | calculated
from plans
and
elevations | empirical values; found in
reference tables; CLTD for
glazing is approximately equal
to delta t | # • Radiative transfer through transparent/translucent assemblies (glazing in windows, doors, skylights) | Equation and
Variables: | q _s = | SC or SHGC | A | SHGF | CLF | |----------------------------|--|---|--|---|--| | I-P Units: | Btuh | dimensionless | ft sq | Btuh / ft sq | dimensionless | | Description: | sensible
heat flow | shading
coefficient or
solar heat gain
coefficient | surface
area of
element | solar heat gain factor | cooling load factor | | Discussion: | would like to minimize this variable through design decisions an intent to provide solar heating will require summer / winter coordination | a measure of the shading effectiveness of a glazing product and any interior and/or exterior shading devices (such as overhangs or drapes) SC is the traditional value used for this measure; SHGC is a newer value that is measured in a laboratory | design
decisions
determine
the
magnitude
of this
value | the maximum clear-day solar radiation expected to strike the glazing on the month, day, and hour selected for cooling load calculations; is affected by latitude, tilt, and orientation | an "adjustment" factor
that accounts for the
percentage of radiant
energy that is stored in the
building's interior mass
and furnishings at the time
of analysis | | Implications: | affects
system size
and energy
use | maximum values
often set by
energy efficiency
codes or
standards | function of
building
design | affected by
orientation, tilt,
month, day, hour,
and latitude, | CLF is affected by the weight of interior elements; may be less than or greater than 1.0 (indicating storage or discharge) | | Notes: | imposes
first-cost
and life-
cycle costs | found by calculation or from testing lab reports | calculated
from plans
and
elevations | statistical data;
available in tables | empirical values; found in
reference tables; useful as
a design tool | • Sensible loads resulting from infiltration or ventilation air flows: | Equation and
Variables: | q _s = | Q (cfm) | 1.1 | delta t | |----------------------------|---|---|--|---| | I-P Units: | Btuh | cu ft / min | (60) (Btuh) /
(cu ft) (deg F) | deg F | | Description: | sensible
heat flow | rate of air flow | conversion
factor
(a constant) | temperature difference
between indoor and outdoor
air | | Discussion: | would like to
minimize
this variable
through
design
decisions
and good
detailing | infiltration is
unintended air flow
(leakage)
ventilation is
intended air flow
(usually ducted in
active systems) | | | | Implications: | affects
system size
and energy
consumption | minimum values often set by building codes or air quality standards typically affects indoor air quality | not a design
issue | this type of load is instantaneous—there is no capacitive effect from building mass | | Notes: | imposes
first-cost
and life-
cycle costs | infiltration may be estimated by the "air change method" or the "crack method" and is established by construction quality ventilation rate is established as a design criterion (part of OPR) | conversion
factor applies
only to I-P unit
calculations | | Moisture transfer through assemblies located above ground: | Equation and
Variables: | W = | М | A | delta p | |----------------------------|---|--|---|--| | I-P Units: | grains per hour | grains / (hr) (ft sq)
(inch of mercury) | ft sq | inch of mercury | | Description: | mass of water
vapor flow | permeance | surface area of element | difference in vapor pressure
between indoor and outdoor air | | Discussion: | would like to minimize this variable through design decisions mass can be converted to heat energy equivalent by use of a conversion factor | a measure of the ease with which water vapor is transferred through an assembly effect is conceptually "equivalent" to that of U-value in sensible heat flow value is determined by design decisions | area of
element is
determined by
design
decisions | a function of the interior and exterior climate conditions during cooling season, the exterior vapor pressure is usually higher than the interior vapor pressure | | Implications: | affects system
size and energy
consumption | usually only vaguely
discussed in energy
efficiency codes or
standards | function of building design | | | Notes: | imposes first-
and life-cycle
costs
can cause
comfort and IAQ
problems if not
properly
considered in
design | calculated in a manner similar to that used for U-values preferred term for component is "vapor retarder" most glazing materials are impervious (have a very low "M") | calculated
from plans and
elevations | found from psychrometric chart
(one that shows vapor pressures) | **NOTE:** the moisture flow units (grains) are the result of the permeance units; this water vapor quantity must be condensed by a vapor compression system (or desiccant system) to be removed from the building; the energy required to do so can be calculated by converting grains to pounds (1 grain = 0.000143 pounds) and multiplying the pounds of water by the latent heat of vaporization (around 970 Btu/pound). • Latent loads resulting from infiltration or ventilation air flows: | Equation and
Variables: | q _L = | Q | 4840 | delta W | |----------------------------|---|--|---|---| | I-P Units: | Btuh | cu ft / min
[cfm] | (60) (Btuh) / (cu ft)
(pound H ₂ O) | pounds H ₂ O / pound dry air | | Description: | latent heat
flow | rate of air flow | conversion factor (a constant) | difference in absolute
humidity between indoor and
outdoor air | | Discussion: | would like to
minimize
this variable
through
design
decisions
and/or
details | infiltration is
unintended air
flow (leakage)
ventilation is
intended air flow
(usually ducted
in active
systems) | | | | Implications: | affects
system size
and energy
consumption | minimum values
often set by
building codes or
air quality
standards
typically affects
indoor air quality | not a design issue | this type of load is instantaneous—there is no capacitive effect from building mass | | Notes: | imposes
first-cost
and life-
cycle costs
and poor
design can
affect
comfort and
IAQ | infiltration estimated by the "air change method" or the "crack method" ventilation rate is an established design criterion | conversion factor
applies only to I-P
unit calculations | found from standard psychrometric chart | ## **Internal Loads** These loads originate within the building and are often determined by a combination of design team (type of electric lamp), owner (types of computers), and occupant (on-off behavior) decisions. Internal loads are critical to the energy performance of larger-scale buildings. < see next page > # • Sensible loads from lighting systems: | Equation and
Variables: | q _s = | Installed Lamp
Watts | 3.41 | Usage Factor | Ballast
Factor | CLF | |----------------------------|---|---|---------------------------|--|---|--| | I-P Units: | Btuh | Watts | Btuh /
Watt | dimension-
less | dimension-
less | dimensionless | | Description: | sensible
heat flow | connected
electrical load
for all lamps in
building | conver-
sion
factor | an
adjustment
factor | an
adjustment
factor | cooling load factor | | Discussion: | would like
to minimize
this
variable
through
design
decisions | usually estimated in schematic design and obtained from electrical plans in later design phases | | accounts for
any lamps
that are
installed but
would not
be operated
under
conditions
assumed for
load
calculations | accounts for the electrical load imposed by ballasts required for gaseous discharge lamp operation | an "adjustment" factor
that accounts for the
percentage of radiant
energy that is stored
in the building=s
interior mass | | Implications: | usually a
large part
of the total
load in non-
residential
buildings
affected by
lighting
system
selection | lighting budget values are often set by energy efficiency codes or standards use of daylighting will reduce this value (if properly done) | | | electronic
ballasts
have
reduced
this factor
from the
1.25 value
typically
used for
magnetic
ballasts | CLF is affected by the weight of interior elements and by the arrangement of lighting fixtures with respect to a space and its air flow patterns | | Notes: | imposes
first- and
life-cycle
costs | | | function of design intent | obtained
from
product
data | empirical values;
found in ASHRAE
reference tables | ## • Sensible loads from occupants: | Equation and
Variables: | q _s = | Number of People | Sensible Load
per Person | CLF | |----------------------------|---|--|---|--| | I-P Units: | Btuh | integer number | Btuh | dimensionless | | Description: | sensible
heat flow | occupant loading | sensible heat
discharge | cooling load factor | | Discussion: | | a function of building
program and design | a result of the
body's search for
thermal
equilibrium | an "adjustment" factor that
accounts for the percentage
of radiant energy that is
stored in the building's
interior mass and furnishings | | Implications: | a function of
design, but
not
controllable
via design | | a function of
occupant activity
level and
age/gender mix
of occupants | affected by time selected for load calculation relative to daily occupancy patterns | | Notes: | often a
substantial
load in
assembly
occupancies | calculated from
information shown in
building drawings | empirical values;
found in
reference tables | empirical values; found in
reference tables; values are
not necessarily intuitive, but
are logical | #### • Latent loads from occupants: | Equation and
Variables: | q _L = | Number of People | Latent Load per Person | |----------------------------|--|--|---| | I-P Units: | Btuh | integer number | Btuh | | Description: | latent heat flow | occupant loading | latent heat discharge | | Discussion: | | a function of building program and design | a result of the body's search for
thermal equilibrium | | Implications: | a function of
design, but not
controllable via
design | | a function of occupant activity level and age/gender mix of occupants | | Notes: | often a substantial load in assembly occupancies | calculated from information shown in building drawings | empirical values; found in reference tables | **NOTE:** there is no CLF (cooling load factor) applied to this load; the latent (moisture) load from occupants is assumed to not be affected by storage of water vapor in the building mass or furnishings; in other words, the load is assumed to be instantaneous. # • Sensible loads from equipment and appliances: | Equation and
Variables: | q _s = | Installed
Wattage | 3.41 | Usage Factor | CLF | |----------------------------|--|---|-------------------|--|---| | I-P Units: | Btuh | Watts | Btuh / Watt | dimensionless | dimensionless | | Description: | sensible
heat flow | connected electrical load (or its thermal equivalent) for all equipment and appliances in building | conversion factor | cooling load factor | | | Discussion: | would like to
minimize
this variable
through
design
decisions | usually estimated in schematic design and obtained from plans and equipment data in later design phases | | accounts for any equipment that is installed but would not be operated under the conditions assumed for load calculations | an "adjustment" factor
that accounts for the
percentage of radiant
energy that is stored in
the building=s interior
mass | | Implications: | although a
function of
the building
program,
some
control of
these loads
is possible
through
design | even with efficiency improvements, the magnitude of equipment loads seems to increase as more and more electronic equipment is used in all types of buildings | | usage factor may
also be used to
account for the
portion (if any) of
equipment heat
dissipation that is
removed from a
building by exhaust
devices (vents,
hoods) | CLF is affected by the weight of interior elements and the percentage of equipment load that is radiant | | Notes: | imposes
first-cost
and life-
cycle costs | | | function of design intent | empirical values; found
in ASHRAE reference
tables | • Latent loads from equipment and appliances: | Equation and
Variables: | q _L = | Latent Output | Usage Factor | |----------------------------|--|---|---| | I-P Units: | Btuh | Btuh | dimensionless | | Description: | latent heat flow | heat equivalent of
moisture output from
equipment | an adjustment factor | | Discussion: | would like to
minimize this
variable through
design decisions | usually estimated in
schematic design and
obtained from plans and
equipment data in later
design phases | accounts for any equipment that is installed but would not be operated under the conditions assumed for load calculations | | Implications: | although a function
of the building
program, some
control of these
loads is possible
through design | | usage factor may also be used to account for the portion (if any) of equipment moisture dissipation that is removed from a building by exhaust devices (vents, hoods) | | Notes: | imposes first- and
life-cycle costs | some information available in generic tables; usually obtained from product data | estimated from design intent and equipment data | **NOTE:** there is no CLF (cooling load factor) applied to this load; the latent (moisture) load from equipment and appliances is assumed to not be affected by storage of water vapor in the building mass or furnishings; the load is assumed to be instantaneous.