

CERTIFIED PASSIVE HOUSE CONSULTANT STUDY GUIDE

OUTLINE

- Passive Building Criteria (PHIUS+)
 - Click for PHIUS+ 2018 Space Conditioning Criteria Calculator
- Energy Balance
- Losses
 - Transmission Losses through Envelope
 - Ventilation Losses
- R-Values, U-Values and Surface Temperature
- Gains
 - Solar Gains
 - Internal Gains
- Unit Review

Beach Green Dunes, Far Rockaway, NY

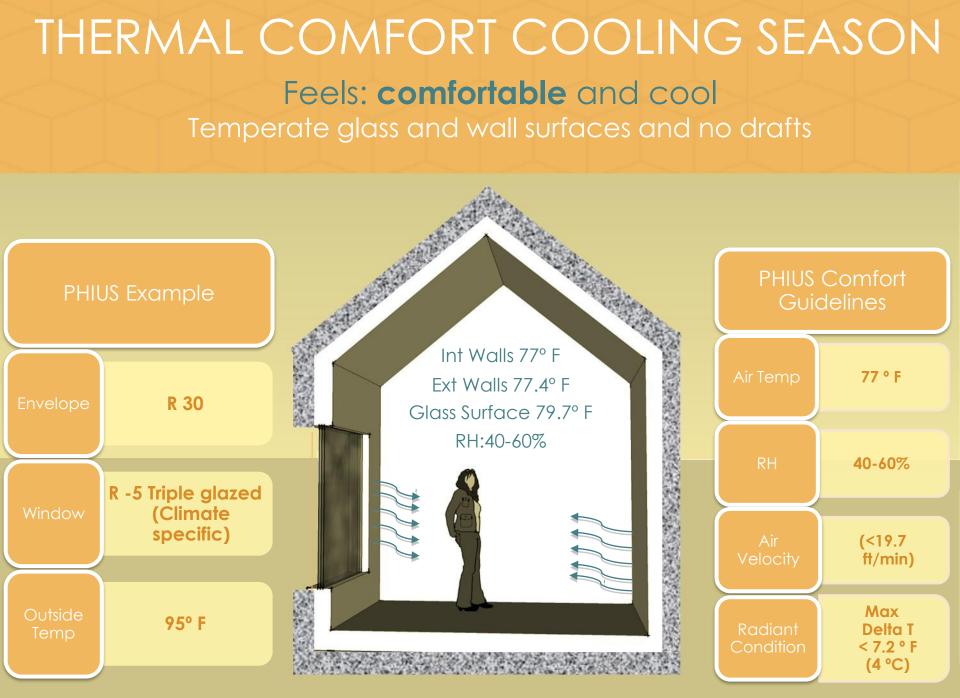
CPHC STUDY GUIDE

PERFORMANCE REQUIREMENTS PRESCRIPTIVE REQUIREMENTS RECOMMENDATIONS

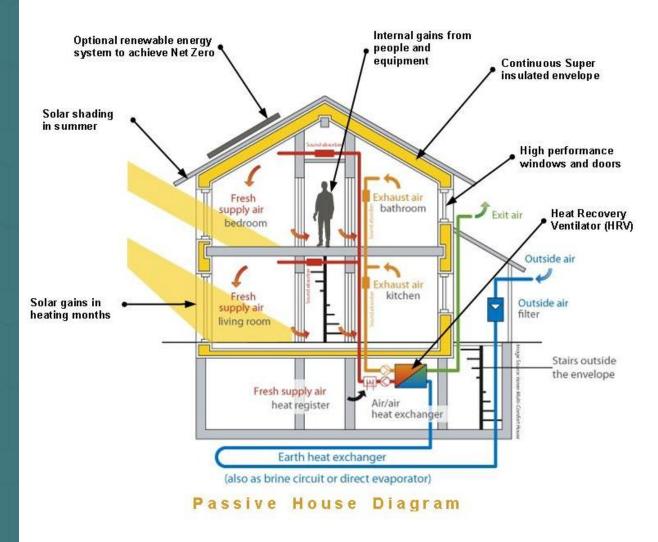
PHIUS+ 2018 PASSIVE BUILDING PERFORMANCE REQUIREMENTS

Source Energy, Residential-	kWh/person/yr	≤ 3840 kWh/person/yr
Source Lifergy, Residerindi	Occupancy	(# of Bedrooms + 1), per unit
Source Energy, Non-Residential	kBTU/ft² _{iCFA} /yr	≤ 34.8
Airtightness		≤ 0.060
Airtightness, $MF \ge 5$ stories, non-comb.	CFM ₅₀ /ft ² of gross enclosure area	≤ 0.080
Annual Heating Demand	kBTU/ft ² _{iCFA} /yr	Climate Specific
Annual Cooling Demand		Climate Specific
Peak Heating Load		Climate Specific
Peak Cooling Load	BTU/ft ² _{iCFA} /hr	Climate Specific

PHIUS+ 2018 PASSIVE BUILDING PRESCRIPTIVE REQUIREMENTS


PHIUS+ Ventilation Protocol	CFM	Balanced Ventilation, see Guidebook 3.5.3.3
Thermal Bridge Mold Risk	%RH	< 80% using ISO 13788/ASHRAE 160 calc
Window Condensation Risk	%RH	< 100% using ISO 13788/LTIE calc
Window Comfort Assessment	Max U-V alue	Based on climate + window height, see calculator.
Assembly Moisture Risk	various	See Guidebook 3.4.3 & Appendix B
PHIUS+ QA/QC Protocol	various	Pre-Certification and On-Site Verification
Supporting 3rd Party Verifications	various	EPA Indoor AirPLUS, EPA Energy Star, DOE ZERH

PHIUS+ 2018 PASSIVE BUILDING RECOMMENDATIONS


Thermal Enclosure	hr.ft ² .°F/BTU	≈ R-25 - R-80; climate specific
Window SHGC	%	≈ 0.27 - 0.61; climate specific
Window Installed U-factor	BTU/hr.ft ² .°F	$U_{w-install} \approx 0.41 - 0.08$; climate specific
Ventilation Efficiency	% recovery	53% - 93%; climate specific
v ennichon Eniciency	Watt/cfm	0.27 - 2.23; climate specific
Thermal-Bridge Threshold	BTU/hr.ft.°F	Ψ ≤ 0.006
Indoor Radiant Condition	ΔT°F	≤ 7.2 °F (Indoor setpoint vs. indoor surfaces)
Indoor Relative Humidity	%RH	40%-60% RH
Ventilation Air Velocity	ft/min	20- 30 ft/min (at supply diffusers)
Incoming Ventilation Air	°F	≥ 62.0 °F
Max Temp of Heating Coil	°F	125.6 °F
Daily DHW Use	gallons	6.6 gal/person.day @ 140F

THERMAL COMFORT HEATING SEASON Feels: comfortable + WARM! Temperate glass and wall surfaces and no drafts

ENERGY BALANCE

REMAINING ANNUAL HEATING DEMAND HEATING

$\boldsymbol{Q}_{\boldsymbol{H}} = \boldsymbol{Q}_{T} + \boldsymbol{Q}_{V} - \boldsymbol{n} * (\boldsymbol{Q}_{S} + \boldsymbol{Q}_{I})$

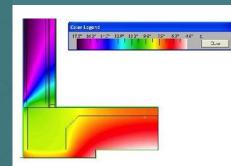
Q_T	(kBTU/yr) transmission heat loss
Q_V	(kBTU/yr) ventilation heat loss
n	(%) utilization factor of gains
Q_s	(kBTU/yr) solar heat gains
Q_I	(kBTU/yr) internal heat gains

REMAINING ANNUAL COOLING DEMAND COOLING

$\boldsymbol{Q}_{\boldsymbol{C}} = \boldsymbol{Q}_{\boldsymbol{S}} + \boldsymbol{Q}_{\boldsymbol{I}} - \boldsymbol{n} \, \ast (\boldsymbol{Q}_{\boldsymbol{T}} + \boldsymbol{Q}_{\boldsymbol{V}})$

$\boldsymbol{Q}_{\boldsymbol{T}}$	(kBTU/yr) transmission heat loss
Q_V	(kBTU/yr) ventilation heat loss
n	(%) utilization factor of losses
Q_s	(kBTU/yr) solar heat gains
Q _I	(kBTU/yr) internal heat gains

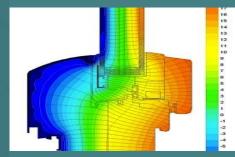
REMAINING PEAK HEATING LOAD HEATING


$$\mathbf{P}_{\mathbf{H}} = P_T + \mathsf{P}_V - (PS + P_I)$$

\mathbf{P}_{T}	(BTU/hr) peak transmission heat loss
$\boldsymbol{P}_{\boldsymbol{V}}$	(BTU/hr) peak ventilation heat loss
P _s	(BTU/hr) peak solar heat gains
$\boldsymbol{P}_{\boldsymbol{I}}$	(BTU/hr) peak internal heat gains

REMAINING PEAK COOLING LOAD COOLING

$$\mathbf{P}_{C} = P_{S} + \mathsf{P}_{I} - (P_{T} + P_{V})$$


\boldsymbol{P}_{T}	(BTU/hr) peak transmission heat loss
$\boldsymbol{P}_{\boldsymbol{V}}$	(BTU/hr) peak ventilation heat loss
P _s	(BTU/hr) peak solar heat gains
P _I	(BTU/hr) peak internal heat gains

TOTAL LOSSES:

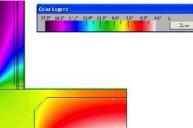
ENCLOSURE LOSSES + VENTILATION LOSSES

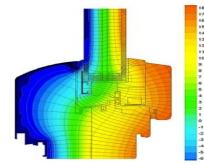
• ANNUAL TOTAL LOSSES

 $Q_L = Q_T + Q_V$

Q_L	(kBTU/yr) Total heat loss
\boldsymbol{Q}_{T}	(kBTU/yr) Transmission heat loss
Q_V	(kBTU/yr) Ventilation heat loss

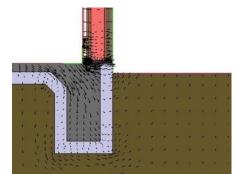
 Q_L / iCFA (kBTU/ft²_{iCFA}/yr) Total specific heat loss

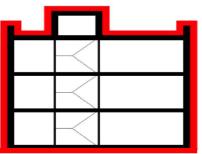

PEAK TOTAL LOSSES


$$P_L = P_T + P_V$$

P_L	(BTU/hr) Total peak heat loss
\boldsymbol{P}_{T}	(BTU/hr) Peak transmission heat loss
P_{V}	(BTU/hr) Peak ventilation heat loss

 P_L / iCFA (BTU/ft²_{iCFA}/hr) Total specific peak heat loss


PHIUS CPHC Training © 2019 | Study Guide 17



THERMAL ENCLOSURE THERMAL BRIDGES

ANNUAL TRANSMISSION LOSS EXTERIOR WALL | ROOF | FLOOR | WINDOWS

$\boldsymbol{Q}_{\boldsymbol{T}} = A * U * fT * \boldsymbol{G}_{\boldsymbol{T}}$

Q _T	(kBTU/yr) transmission heat loss
A	(ft ²) assembly area to exterior dimensions
U	(BTU/hr.ft².°F) U-value, heat transfer coefficient
f _T	(<1)temperature correction factor (used in cases like a ground condition or "X" where heat loss is mitigated)
G _T	(k F.hr/yr) heating degree hours : Conversion: HDD @68F * 24 hr/day/1000 = HDD *0.024 = G_T

CONVERT HEATING DEGREE DAYS TO HEATING DEGREE HOURS G_T

CALCULATE G_T FOR A YEAR

1	Determine annual heating degree days per climate file (°F.day/yr)
2	Multiply by 24 hours/day to obtain hours/yr (°F.hr/yr)
3	Divide by 1000 to obtain (k°F.hr/yr)

What are	he heating degree hours G _T for a location	on
	with 6736 heating degree days?	

1	G _T = 6736 °F.days * 24hr.day/1000
2	G _T = 6736 °F. days *24hr. day /1000
3	$G_{T} = 6736 ^{\circ}\text{F} * 0.024 \text{khr}$
4	G _T = 161.66 k°F.hr

DETERMINE G_T HEATING DEGREE HOURS

CALCULATE G_T FOR A GIVEN TIME PERIOD LESS THAN A YEAR

1	Determine the number of days in the relevant period.	
2	Multiply by 24 hours/day to obtain hours/period.	
3	Determine ΔT between indoors and outdoors relevant to period (Monthly Avg Temp)	
4	Multiply hours/period by ΔT .	
5	Divide by 1000 to obtain k°F.hr/period	
	What is the G _T for the month of January for a location with a January monthly avg. temp of -2 F?	
1	$G_{T-January} = days * 24hr/1000 * \Delta T$	
2	G _{T-January} = 31 days * .024 khr/ day * (68°F – (-2°F))	
3	$G_{T-January} = 0.744 \text{ khr} * 70 ° F$	
4	G _{T-January} = 52.08 khr ° F	

	ANNUAL TRANSMISSION LOSS EXTERIOR WALL ROOF FLOOR WINDOWS	
	$\boldsymbol{Q}_{\boldsymbol{T}} = A * U * fT * \boldsymbol{G}_{\boldsymbol{T}}$	
$U_{wall} = 0.12$	BTU/hr.ft ² . F $A_{wall} = 400 \text{ ft}^2$ HDD = 6736 F.day/yr	
Q _T	= 400ft ² * (0.12 BTU/hr.ft ² °F) * 1 *(6736 °F.day/yr) * 24 (hr/day) / 1000	
	= 400 ft² * (0.12 BTU/hr. ft²°F) * 1 *(6736 °F.day /yr) * 24 (hr/ day) / 1000	
	= (400 * 0.12 BTU) * 1* (6736 yr * 0.024k)	
	= 48 kBTU * 1 * 161.66 yr	
	= 7759.68 kBTU/yr	
	Divide by ft ² (or iCFA for whole) to get kBTU/ft ² yr	

PEAK TRANSMISSION LOSS EXTERIOR WALL | ROOF | FLOOR | WINDOWS

$\mathbf{P}_{\mathbf{T}} = A * U * fT * \mathbf{\Delta}_{\mathbf{T}}$

\boldsymbol{P}_{T}	(BTU/hr) peak transmission heat loss
A	(ft ²) assembly area to exterior dimensions
U	(BTU/hr.ft².°F) U-value, heat transfer coefficient
f _T	(<1) temperature correction factor ALWAYS 1 for peak (except zone "x" and slab conditions)
Δ_T	Indoor minus outdoor temp (°F) for worst case of weather condition 1 (cold, clear) or 2 (moderate, cloudy)

PEAK TRANSMISSION LOSS EXTERIOR WALL | ROOF | FLOOR | WINDOWS

$$\mathbf{P}_{\mathbf{T}} = A * U * fT * \mathbf{\Delta}_{\mathbf{T}}$$

 $U_{wall} = 0.12 \text{ BTU/hr.ft}^2$. F | $A_{wall} = 400 \text{ ft}^2$ | Peak low = 15° F

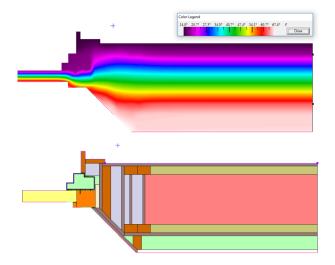
P _T	= 400ft ² * 0.12 BTU/hr.ft ² °F * 1 * (68°F – 15°F)
	= 400 ft² * 0.12 BTU/hr .ft².°F * 1 * 53 °F
	= 48 BTU/hr * 53
	= 2544 BTU/hr
	Divide by ft ² (or iCFA for whole) to get BTU/ft ² _{iCFA} /hr

ANNUAL LINEAR LOSS LINEAR THERMAL BRIDGES

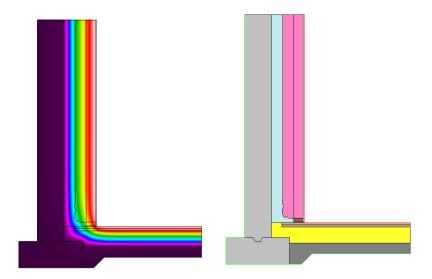
$$\boldsymbol{Q}_{T\Psi} = l * \Psi * fT * \boldsymbol{G}_{T}$$

$oldsymbol{Q}_{T\Psi}$	(kBTU/yr) transmission heat loss
l	(ft) length of thermal bridge
Ψ	(BTU/hr.ft.°F) psi-value, linear heat transfer coefficient
f _T	(≤ 1) temperature correction factor (used in cases like a ground condition or "X" where heat loss is mitigated)
G _T	(k F.hr/yr) heating degree hours

PEAK LINEAR LOSS LINEAR THERMAL BRIDGES


$\mathbf{P}_{\mathbf{T}\Psi} = l * \Psi * fT * \mathbf{\Delta}_{\mathbf{T}}$

$P_{T\Psi}$	(BTU/hr) transmission heat loss
l	(ft) length of thermal bridge
Ψ	(BTU/hr.ft.°F) psi-value, linear heat transfer coefficient
f _T	(<1) temperature correction factor ALWAYS 1 for peak (except zone "x" and slab conditions)
Δ_T	(°F) worst case of weather condition 1 (cold, clear)or 2 (moderate, cloudy)


THERMAL BRIDGES:

MUST BE ACCOUNTED FOR

Thermal bridge free ≤ 0.006 BTU/hr.ft°F

 Ψ – installation thermal bridge

 Ψ = -0.05 BTU/hr.ft.°F **free** of thermal bridge

TOTAL ANNUAL TRANSMISSION LOSS ENCLOSURE + LINEAR TB + POINT TB $\boldsymbol{H}_{\boldsymbol{T}} = \boldsymbol{\Sigma} A j \boldsymbol{U}_{i} + \boldsymbol{\Sigma} \boldsymbol{\Psi}_{i} \boldsymbol{l}_{i} + \boldsymbol{\Sigma} \mathbf{X}_{i}$ H_{T} (kBTU/yr) transmission loss (kBTU/yr) sum enclosure transmission loss ΣAj $\Sigma \Psi$:l (kBTU/yr) sum linear transmission loss ΣΧ (kBTU/yr) sum point transmission loss

VENTILATION LOSSES:

AIR LEAKAGE VENTILATION EQUIPMENT

ENCLOSURE AIR LEAKAGE LIMIT

 $CFM_{50} = q_{50} limit * gross enclosure surface area ft^2$

CFM ₅₀	(CFM ₅₀)Total permitted leakage for blower door test *CFM = ft ³ /min
q ₅₀ limit	0.060 CFM ₅₀ /ft ² (or 0.080 CFM ₅₀ /ft ² for MF 5 stories+)
Gross enclosure surface area	(ft²) Total gross exterior surface area of building enclosure used for energy model

AIR LEAKAGE LIMIT CONVERSION From ACH₅₀ to CFM₅₀/ft²

$q_{50} = n_{50} * \frac{1}{60} * V/ft^2 gross enclosure$

q_{50}	(CFM ₅₀ /ft ²) leakage in reference to the gross enclosure area of the envelope
<i>n</i> ₅₀	(ACH ₅₀ or 1/hr) Pressure test air changes at 50 pascal pressure difference *(1/60 = hour to minute conversion factor)
V	(ft ³) Net enclosed air volume for air pressure test

AIR LEAKAGE LIMIT CONVERSION From CFM₅₀/ft² to ACH₅₀

$$n_{50} = q_{50} * \frac{60}{V} * ft^2 gross enclosure$$

n_5	0	(ACH ₅₀ or 1/hr) Pressure test air changes at 50 pascal pressure difference 1/60 = (hour to minute conversion factor)
q_{5}	0	(CFM ₅₀ /ft ²) leakage in reference to the gross enclosure area of the envelope *(60 = minute to hour conversion factor)
V		(ft ³) Net enclosed air volume for air pressure test

AIR LEAKAGE TEST PRESSURE CONVERSION/EQUIVALENT From CFM₅₀ to CFM₇₅

$CFM_{75} = CFM_{50} * ((75/50)^{h})$

<i>CFM</i> ₅₀	Measured air leakage in cubic feet per minute at 50 Pascals
50	Pressure used for test (Pa)
75	Test pressure converting to (Pa)
h	Flow exponent (from test result) If unknown, use 0.7

AIR LEAKAGE TEST PRESSURE CONVERSION/EQUIVALENT From CFM_{Q1} to CFM_{Q2}

$$CFM_{Q2} = CFM_{Q1} * ((Q_2/Q_1)^h)$$

CFM _{Q1}	Measured air leakage in cubic feet per minute at Q1 pressure (Pascals)
Q ₁	Pressure used for test (Pa)
Q ₂	Test pressure converting to (Pa)
h	Flow exponent (from test result) If unknown, use 0.7

AIR CHANGE RATE

 $n_{nat} = V^* n_{50}^* e / (1 + f / e^* (excess extract air / n_{50})^2)$

n _{nat}	(ACH or 1/hr) natural infiltration air change rate *takes into account target ACH ₅₀ and wind protection coefficient	
V	(ft ³) Net enclosed air volume for air pressure test	
<i>e</i> , <i>f</i>	wind protection coefficients EN 13790	
<i>n</i> ₅₀	(ACH ₅₀ or 1/hr) Pressure test air changes at 50 pascal pressure difference	

	LATION CONVERSIONS and AIR CHANGE (ventilation or leakage)	
$CFM = ACH/60_{min} * V$		
ACH	(1/hr) Air changes per hour	
CFM	(ft³/min) Cubic feet per minute	
V	(ft ³) Net enclosed air volume	
$ACH = CFM * 60_{min}/V$		
ACH	(1/hr) Air changes per hour	
CFM	(ft ³ /min) Cubic feet per minute	
V	(ft³) Net enclosed air volume	

ANNUAL VENTILATION LOSS

 $Q_v = n_v * V * c_p \rho * G_T$

İ	
Q_{v}	(kBTU/yr) Ventilation heat loss
n_v	(ACH or 1/hr) energetically effective air exchange rate
V	(ft ³) Net encosed air volume
$c_p ho$	Specific heat capacity of air: (0.018 BTU/ft ³ ° F or 33 Wh(m ³ K) - aka c _{air}
G _T	(k°F.hr/yr) heating degree hours = $\Sigma (\Delta \vartheta * h_{\Delta \vartheta})$ *To convert HDD to G _{t,} multiply HDD by 0.024.

PEAK VENTILATION LOSS

 $P_v = n_v * V * c_p \rho * \boldsymbol{\Delta}_T$

P_{v}	(BTU/hr) Ventilation heat loss
n_v	(ACH or 1/hr) energetically effective air exchange rate
V	(ft³) Net enclosed air volume
$c_p ho$	Specific heat capacity of air: (0.018 BTU/ft ³ ° F or 33 Wh(m ³ K)) - aka c_{air}
Δ_T	(°F, K or °C) Temperature difference (worst case or given temperature)

AIR EXCHANGE RATE

$$\boldsymbol{n_{v}} = n_{v \, system} * (1 - \% HR) + n_{nat}$$

n _v	(ACH or 1/hr) energetically effective air exchange rate
$n_{v m \ system}$	(ACH or 1/hr) average ventilation air change rate of building
%HR	(%) Total system recovery efficiency *Ventilation ASE (apparent sensible effectiveness) and possible earth tube/geo thermal loop transmission combined
n _{nat}	(ACH or 1/hr) natural infiltration air change rate

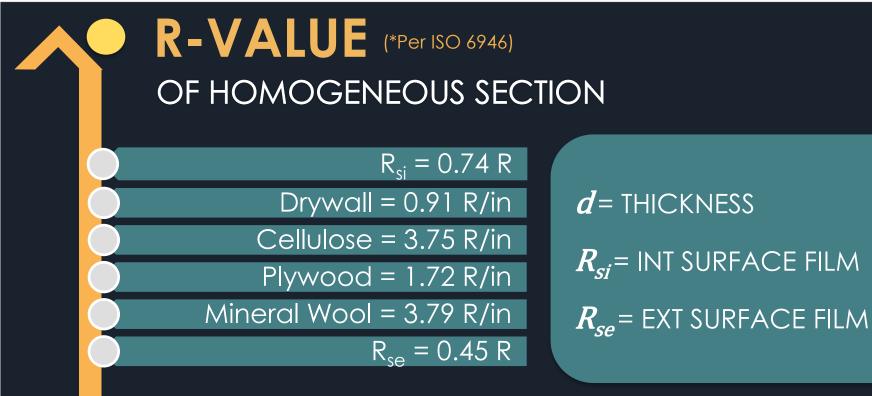
VENTILATION FRESH AIR SUPPLY TEMPERATURE BASED ON OUTDOOR DESIGN CONDITION

Supply Air Temp = $\theta_e + [\% HR (\theta_i - \theta_e)]$

θ_{e}	Outdoor Temperature, design condition (°F)
θ_{i}	Indoor Temperature, seasonal setpoint (°F)
%HR	(%) Total system recovery efficiency *Ventilation ASE (apparent sensible effectiveness) and possible earth tube/geo thermal loop transmission combined

The state of the s

10

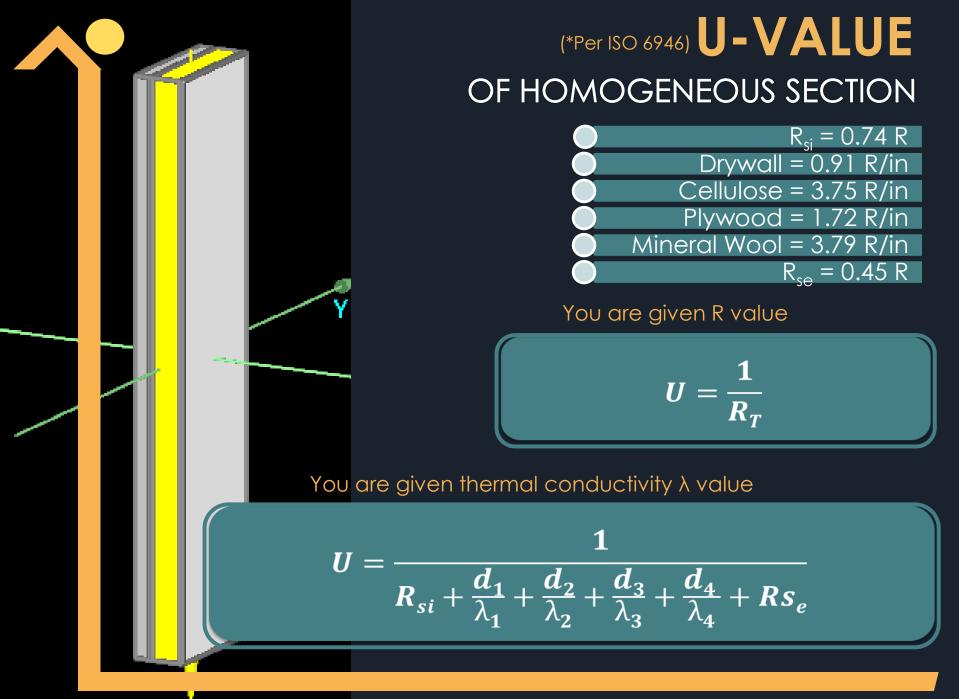

VILLAGE

PHIUS RECOMMENDED VENTILATION RATES

Room	Airflow	Units
Kitchen	35	CFM
Bathroom	24	CFM
1/2 Bathroom	12	CFM
Laundry Room	12	CFM
Mech Room	12	CFM

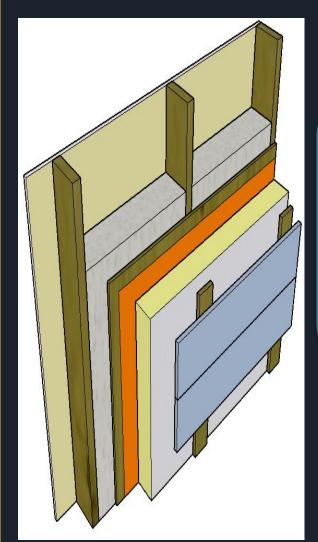
71.7 °

CPHC STUDY GUIDE UVALUE | RVALUE | SURFACE TEMP



You are given R/in

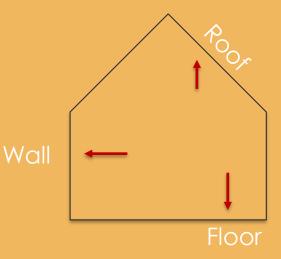
 $R_T = R_{si} + (d_1 R_1) + (d_2 R_2) + (d_3 R_3) + (d_4 R_4) + R_{se}$


You are given R per layer

$$R_T = R_{si} + R_1 + R_2 + R_3 + R_4 + R_{se}$$

PHIUS CPHC Training © 2019 | Study Guide 44

OF HETEROGENOUS SECTION


 d_1 = THICKNESS

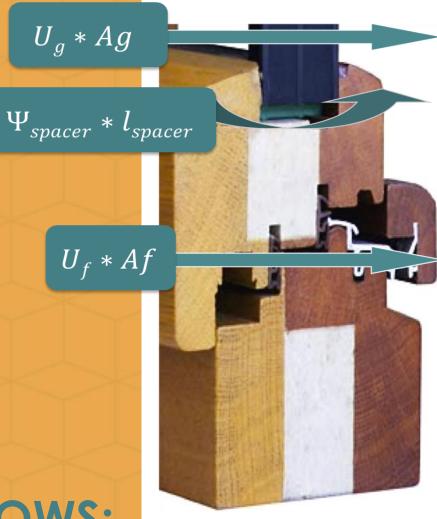
 R_1 = R per inch

Calculated for insuation <u>and</u> framing of non-homogeneous layers

Total R of layer is normalized for area of each material in the shared layer

Seventh Day Adventist Church, NY

SURFACE FILM RESISTANCE VALUES **U-value R-value** INTERIOR Upward Heat Flow 0.57 1.754 Horizontal Heat Flow 0.74 1.351 Downward Heat Flow 0.97 1.031 Corner (for THERM) 8" horz & ∨ert. 1.14 0.877 EXTERIOR 4.348 Exposed 0.23 Screened 0.45 2.222 Soil surface (for THERM) 0.17 5.882 BELOW GRADE 0.00001 99999

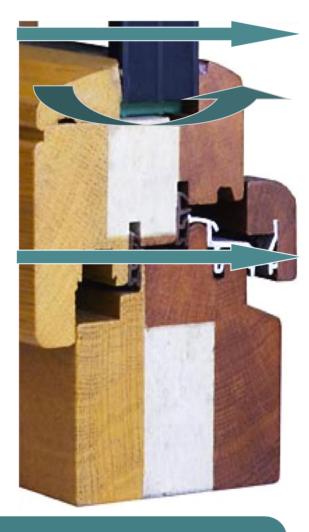

SURFACE

VALUES

RESISTANCE

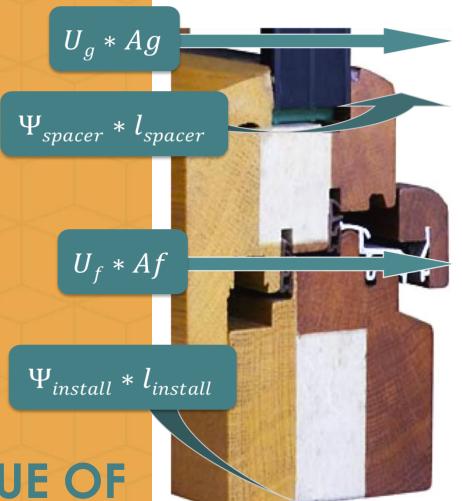
FILM

U_f	BTU/hr.ft² °F			
U _g	BTU/hr.ft² °F			
Ψ_{spacer} BTU/hr.ft °F				
Glazing Dimensions				
Frame Dimensions				


U VALUE OF WINDOWS:

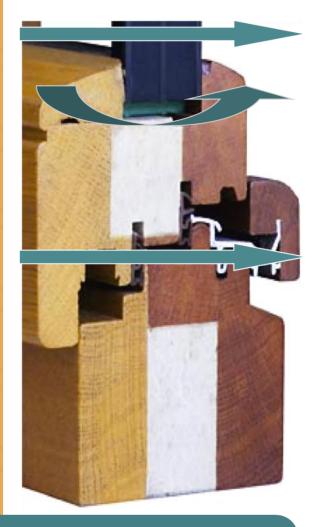
REQUIRED CALCULATION FACTORS

U VALUE OF WINDOWS:


FORMULA

(*Per ISO 10077)

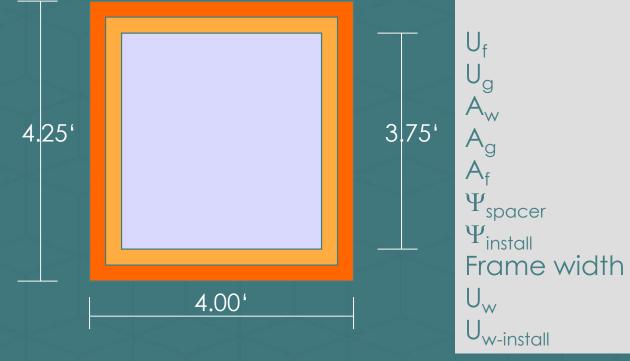
$$U_{w} = \frac{U_{g} * Ag + Uf * Af + \Psi_{spacer} * ls_{pacer}}{A_{g} + Af}$$


U_f	BTU/hr.ft ² °F			
U _g	BTU/hr.ft² °F			
$\Psi_{\scriptscriptstyle spacer}$	BTU/hr.ft °F			
$\Psi_{_{install}}$	BTU/hr.ft °F			
Glazing Dimensions				
Frame Dimensions				

INSTALLED U VALUE OF WINDOWS:

REQUIRED CALCULATION FACTORS

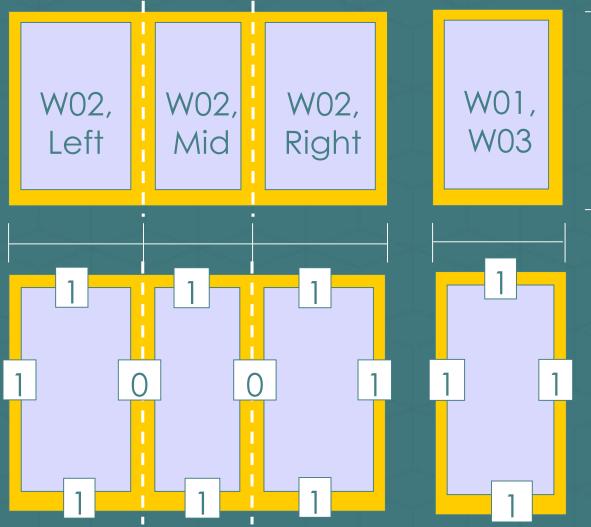
INSTALLED U VALUE OF WINDOWS:


$$U_{w} = \frac{U_{g} * Ag + Uf * Af + \Psi_{spacer} * ls_{pacer} + \Psi_{install} * l_{install}}{A_{g} + Af}$$

FORMULA

(*Per ISO 10077)

INSTALLED U VALUE OF WINDOWS



Example Window:

= 0.18 BTU/hr. ft². F = 0.11 BTU/hr. ft². F = 17 ft² = 13.125 ft² (75+%) = 3.875 ft² (25+%) = 0.02 BTU/hr. ft. F = 0.006 BTU/hr. ft. F = 3 in (all sides) = 0.14 BTU/hr.ft². F = 0.15 BTU/hr.ft². F

INSTALLED U VALUE OF WINDOWS

Precise dimensions and position are required

INSTALLATION condition determines the length of LOSS associated with the $\Psi_{install}$ value

PHIUS Climate Specific Window Guidelines/Recommendations Based on Comfort Performance

	ASHRAE/DOE North American Climate Zone	Overall Installed Window U- value - U _w Btu/hr·ft ² ·°F	Center of Glass U-value - U _g Btu/hr·ft²·ºF	SHGC – South	SHGC – North, East, West
8	8	≤0.11	≤0.10	≥0.50	≤0.40
7	7	≤0.12	≤0.11	≥0.50	≤0.40
	6	≤0.13	≤0.12	≥0.50	≤0.40
4	5	≤0.14	≤0.13	≥0.50	≤0.40
3	4	≤0.15	≤0.14	≥0.50	≤0.40
2	Marine North	≤0.16	≤0.15	≥0.50	≤0.40
- ' 🤤	Marine South	≤0.22	≤0.20	≤0.50	≤0.30
	3 (west)	≤0.18	≤0.16	≤0.50	≤0.30
	2 (west)	≤0.18	≤0.16	≤0.30	≤0.30
	2 (east)	≤0.20	≤0.18	≤0.30	≤0.30

---> Reference: Table Values PHIUS, Climate Map DOE/ASHRAE/NECB Zones by RDH

PHIUS WINDOW COMFORT & CONDENSATION RISK ASSESSMENT

<u>Click for online calculator</u>

- ASHRAE 99% Design Temperature used for analysis
- Required U-value varies based on window height

Project Name Sample

ect Name	Sample				
Project #	Sample				
State	ILLINOIS •				
City	CHICAGO OHARE INTL AP				
ature [⁰F]	4.4				

ASHRAE 99% Design Temperature [°F

http://ashrae-meteo.info/

CONDENSATION RISK

ISO 13788 Calculation for Low Thermal Inertia Elements

TRUE	Is this a Heating Climate?
TRUE	Use simple method for indoor humidity?
TRUE	High occupancy?
	U-value of window frame/glass [BTU/hr.ft ² .F]
15%	Safety Factor
68.0	Interior Surface Temperature of window frame/glass [°F]
YES	Risk of condensation on interior surface acceptable?
0.64	Critical fRsi
JAN	Critical Month
64	Critical CRF Rating

PHIUS WINDOW COMFORT & CONDENSATION RISK ASSESSMENT

PHIUS+ Climate Data

Month	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Ambient Temp (°F)	23.7	27.5	38.8	50.0	59.5	70.0	75.4	71.2	64.6	51.8	40.5	25.3
Dewpoint (°F)	15.1	17.2	29.3	39.2	45.0	55.4	65.7	61.9	55.2	41.0	32.7	18.3

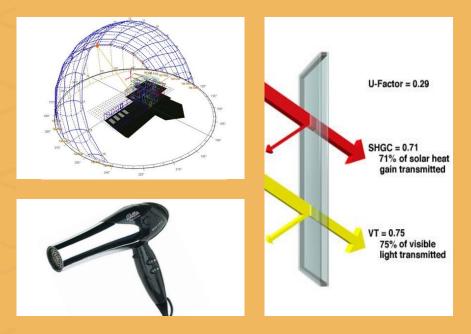
COMFORT REQUIREMENTS

Applies to all projects.

Windows >10' in height and above have the same required U-value

Window Vertical Height (ft) - Use slider	7.4
Required Whole Window U-value [BTU/hr.ft ² .F]	0.20

FOR WALL OR GLASS


$\boldsymbol{\theta}_{si} = \boldsymbol{\theta}_i - \boldsymbol{U} * \boldsymbol{R}_{si} * [\boldsymbol{\theta}_i - \boldsymbol{\theta}_e]$

$\boldsymbol{\theta}_{si}$	(°F) Interior surface temperature
$\boldsymbol{\theta}_{i}$	(°F) Interior temperature
U	(BTU/hr.ft ² .°F) U-value of the wall assembly
R _{si}	(hr.ft².°F/BTU) Interior surface film resistance
$\boldsymbol{\theta}_{e}$	(°F) Exterior temperature

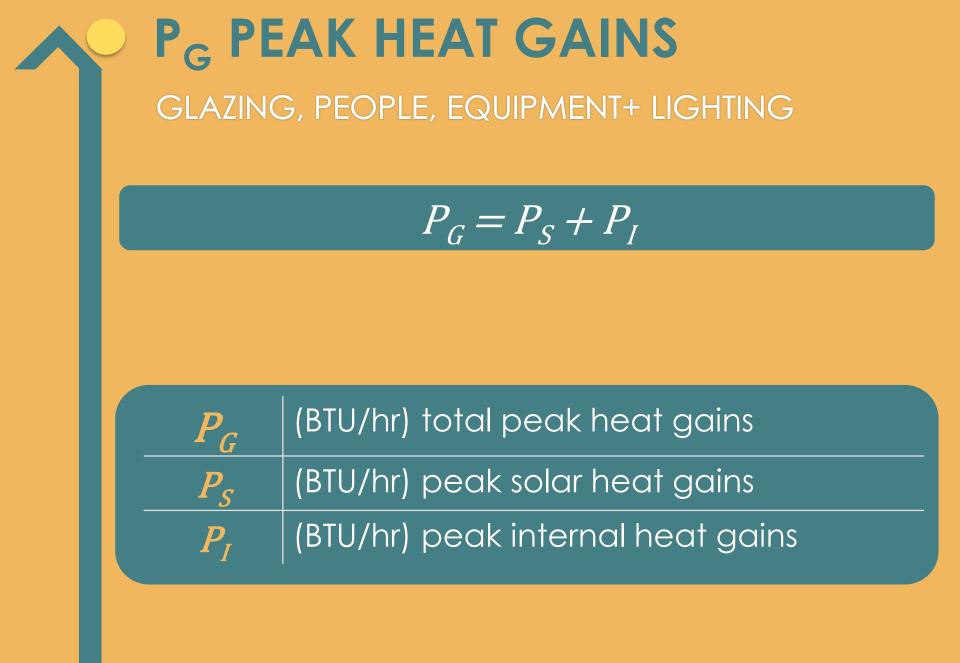
DETERMINE WINDOW U VALUE FOR MAX ΔT AT INTERIOR SURFACE

$\boldsymbol{U} \le 7.2^{\circ} \mathrm{F} \div [R_{si} \times [\theta_i - \theta_e]]$

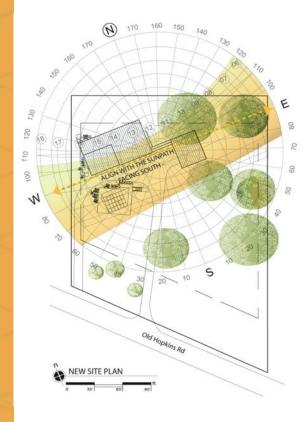
U	(BTU/hr.ft².°F) U-value of the window
R _{si}	(hr.ft².ºF/BTU) Interior surface film resistance
$\boldsymbol{\theta}_{i}$	(°F) Interior temperature
$\boldsymbol{\theta}_{e}$	(°F) Exterior temperature

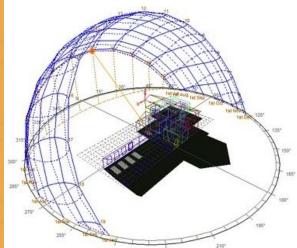
TOTAL GAINS:

SOLAR GAINS + INTERNAL GAINS



Q_F TOTAL ANNUAL HEAT GAINS GLAZING, PEOPLE, EQUIPMENT+ LIGHTING


$Q_F = Q_S + Q_I$



SOLAR GAINS:

WINDOWS SKYLIGHTS GLAZED DOORS

Q_S SOLAR GAINS ANNUAL WINDOW, DOOR AND SKYLIGHT GLAZING

 $Q_S = r * g * A_W * G$

Q_{S}	(kBTU/yr) total solar heat gains
 (%) reduction factor for the frame portion, should be added a straight of the frame portion, should be added a straight of the frame portion, should be added a straight of the frame portion, should be added a straight of the frame portion, should be added a straight of the frame portion, should be added a straight of the frame portion, should be added a straight of the frame portion, should be added a straight of the frame portion, should be added a straight of the frame portion, should be added a straight of the frame portion, should be added a straight of the frame portion, should be added a straight of the frame portion, should be added a straight of the frame portion, should be added a straight of the frame portion, should be added a straight of the frame portion, should be added a straight of the frame portion, should be added a straight of the frame portion, should be added a straight of the frame portion of the frame portion, should be added a straight of the frame portion, should be added a straight of the frame portion, should be added a straight of the frame portion, should be added a straight of the frame portion, should be added a straight of the frame portion of	
(.) total energy transmittance via perpendicular radiation, aka glazing SHGC or g-value	
A_{W} (ft ²) window area (rough opening size)	
G	(kBTU/ft ² .yr) global radiation averaged over the heating season

P_S PEAK SOLAR GAINS WINDOW, DOOR AND SKYLIGHT GLAZING

 $\overline{P_S} = r * g * A_w * G_{worst}$

	Pc	, BTU/hr) total peak solar gains	
		(%) reduction factor for the frame portion, shading, dirt and non-perpendicular incidence of radiation 100% = no shading, 0% = full shading	
	g	(.) total energy transmittance via perpendicular radiation, aka glazing SHGC or g-value	
	A_w	(ft²) window area	
	G	(BTU/hr.ft ²) global radiation for worst case weather condition (cold+clear OR moderately cold+overcast)	

r SOLAR REDUCTION FACTOR WINDOW, DOOR AND SKYLIGHT GLAZING

$\Gamma_T = \Gamma_{shade} \cdot \Gamma_{dirt} \cdot \Gamma_{npi} \cdot \Gamma_{frame\%}$	$r_T = r_{shad}$	$de^* r_{dirt}$	$* \Gamma_{npi}$	* r _{frame %}
---	------------------	-----------------	------------------	------------------------

$ r_T $ (%) total solar gain reduction factor (varies)	
$ \mathcal{I}_{shade} $ (%) solar gain reduction due to shade (varies)	
r _{din}	(%) solar gain reduction due to dirt on panes (5% blocked, then r = 95%)
r _{np}	(%) solar gain reduction due to non-perpendicular incidence of radiation (15% blocked)
r _{frame} 9	 (%) solar gain reduction due to frame % of overall window (varies)
	100% = no shading, 0% = full shading

INTERNAL GAINS:

OCCUPANTS EQUIPMENT LIGHTING

QI INTERNAL HEAT GAINS ANNUAL OCCUPANTS | EQUIPMENT | LIGHTING

$Q_I = T_{heat} * q_i * iCFA$

Q_I	Q_I (kBTU/yr) Internal heat gains	
T_{heat} days per heating season * 0.024 hrs		
q_i	(BTU/hr.ft²) calculated internal heat load (typically 0.8 – 1.5)	
iCFA	<i>iCFA</i> (ft ²) interior conditioned floor area	

P₁ INTERNAL HEAT GAINS PEAK OCCUPANTS | EQUIPMENT | LIGHTING

$$P_I = q_i * iCFA$$

P_I (BTU/hr) peak internal heat gains	
q_i	(BTU/hr.ft²) 0.51 unoccupied building internal heat load (worst case)
iCFA	(ft²) interior conditioned floor area

Glasswood Building | Hammer and Hand

UNIT REVIEW

Units	Description
kBTU/yr	Total Annual Demand
kBTU/ft² _{iCFA} /yr	Specific Annual Demand
BTU/hr	Total Peak Load
BTU/ft² _{iCFA} /hr	Specific Peak Load
CFM ₅₀ /ft² ACH ₅₀	Airtightness or Infiltration (@ 50Pa)
hr.ft ² .°F/BTU	R-Value
hr.ft ² .°F/BTU.in	R per inch
BTU/hr.ft ² .°F	U-Value
ACH or CFM	Ventilation Rate
ACH	Air changes per hour
CFM	Cubic feet per minute

THANK YOU

494*

Rr13%

KILOWATTHOURS

CL200 + 240 V 3W + FM 25 TA 30

80 202